Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20232730

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
2.
J Ginseng Res ; 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-2233450

ABSTRACT

Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean red ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

3.
Viruses ; 14(10)2022 10 06.
Article in English | MEDLINE | ID: covidwho-2066559

ABSTRACT

Viruses are dependent on host factors in order to efficiently establish an infection and replicate. Targeting the interactions of such host factors provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking and has previously been shown to be important for human papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus infection, which is completely dependent on receptor-mediated endocytosis for their entry. In conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a broad range of RNA viruses.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2 , Syntenins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Virus Internalization
4.
Drugs of the Future ; 47(3):229-231, 2022.
Article in English | EMBASE | ID: covidwho-1957095

ABSTRACT

The 70th annual meeting of the American Society of Tropical Medicine and Hygiene was kicked off by Dr. Tedros Ghebreyesus, the Director-General of the World Health Organization (WHO). The virtual gathering format included plenary sessions, science and clinical sessions, E-poster sessions, and an exhibit hall featuring the latest products and services for tropical diseases and global health. This report provides highlights from the oral and poster sessions, focusing on developments in the treatment of tropical diseases.

5.
Front Immunol ; 13: 851642, 2022.
Article in English | MEDLINE | ID: covidwho-1933645

ABSTRACT

The rapid evolution of highly infectious pathogens is a major threat to global public health. In the front line of defense against bacteria, fungi, and viruses, antimicrobial peptides (AMPs) are naturally produced by all living organisms and offer new possibilities for next-generation antibiotic development. However, the low yields and difficulties in the extraction and purification of AMPs have hindered their industry and scientific research applications. To overcome these barriers, we enabled high expression of bomidin, a commercial recombinant AMP based upon bovine myeloid antimicrobial peptide-27. This novel AMP, which can be expressed in Escherichia coli by adding methionine to the bomidin sequence, can be produced in bulk and is more biologically active than chemically synthesized AMPs. We verified the function of bomidin against a variety of bacteria and enveloped viruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), herpes simplex virus (HSV), dengue virus (DENV), and chikungunya virus (CHIKV). Furthermore, based on the molecular modeling of bomidin and membrane lipids, we elucidated the possible mechanism by which bomidin disrupts bacterial and viral membranes. Thus, we obtained a novel AMP with an optimized, efficient heterologous expression system for potential therapeutic application against a wide range of life-threatening pathogens.


Subject(s)
COVID-19 , Viruses , Adenosine Monophosphate , Animals , Antimicrobial Peptides , Antiviral Agents/pharmacology , Cattle , SARS-CoV-2
6.
Trop Med Infect Dis ; 7(6)2022 Jun 05.
Article in English | MEDLINE | ID: covidwho-1884357

ABSTRACT

Chikungunya fever is a self-limiting viral illness that is caused by the chikungunya virus (CHIKV). CHIKV is found in multiple provinces of Indonesia, with clustered local outbreaks. This case series investigates a local chikungunya outbreak during the COVID-19 pandemic, involving two virologically confirmed chikungunya cases found in Jambi, Sumatra, Indonesia in 2021 and the contact tracing of 65 people from the same neighborhood (one of which was also virologically confirmed with CHIKV). The two original cases were symptomatic with classic signs of chikungunya fever, while the CHIKV-positive neighbor was asymptomatic. Out of the 65 participants, chikungunya IgM was detected in seven (10.8%) people while chikungunya IgG was detected in six (9.2%) using capture ELISA. Dengue IgG was detected by rapid test in three (4.6%) of the participants, showcasing a history of dengue virus (DENV) infection along with the circulation of CHIKV in the area. A phylogenetic analysis demonstrates a close evolutionary relationship between all three 2021 Jambi CHIKV isolates and the 2015-2016 isolates from Jambi. This case series showcases the endemicity and persistent circulation of CHIKV in Jambi, leaving the area vulnerable to eminent outbreaks of chikungunya fever and doubling the burden of disease during the COVID-19 pandemic. Health staff training for case detection and notification, as well as an integrated vector surveillance should continue to be implemented to provide an early warning indicator of possible chikungunya outbreaks.

7.
mBio ; 13(3): e0073122, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1865140

ABSTRACT

Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viruses , Animals , Chikungunya virus/genetics , Cholesterol/metabolism , Humans , Mice , Tetraspanins/metabolism , Virus Replication/genetics , Viruses/metabolism
8.
Viruses ; 13(8)2021 08 12.
Article in English | MEDLINE | ID: covidwho-1436097

ABSTRACT

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: 'preventive' (pretreatment); 'preventive/therapeutic' (pre/post); and 'therapeutic' (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the 'preventive' and 'preventive/therapeutic' regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


Subject(s)
Adenoviruses, Human/drug effects , Chikungunya virus/drug effects , Influenza A virus/drug effects , Interferons/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adenoviruses, Human/physiology , Animals , Chikungunya virus/physiology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , Influenza A virus/physiology , Interferons/therapeutic use , Interleukins , RNA Virus Infections/drug therapy , RNA Virus Infections/prevention & control , Recombinant Proteins/pharmacology , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , Interferon Lambda
9.
EMBO Rep ; 22(11): e52948, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1381494

ABSTRACT

The type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear. In this study, we show that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in a robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC-I antigen presentation and stress granule signaling are enhanced in IRGM-deficient cells, indicating a robust cell-intrinsic antiviral immune state. Consistently, IRGM-depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviverdae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Altogether, our work highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS-CoV-2, CHIKV, and Zika virus.


Subject(s)
GTP-Binding Proteins/antagonists & inhibitors , Virus Diseases/immunology , Animals , Antiviral Agents/pharmacology , Humans , Mice , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL